C. <u>Structure Groups of Fiber Bundles</u>

we have local trivializations

$$U \subset \mathbb{B}$$
 open and a diffeomorphism
 $p^{-'}(U) \xrightarrow{\phi} U \times F$
 $p \xrightarrow{\circ} \mathcal{L} P_i$
 U

and for two local trivializations (V_{i}, ϕ_{i}) and (V_{z}, ϕ_{z}) we have

$$(U_{1} \cap U_{2}) \times F \stackrel{\text{\tiny def}}{=} \rho^{-1}(U_{1} \cap U_{2}) \stackrel{\text{\tiny def}}{\longrightarrow} (U_{1} \cap U_{2}) \times F$$

$$P_{1} \qquad \qquad \downarrow P \qquad \qquad P_{1}$$

$$U_{1} \cap U_{2}$$

$$\begin{split} \phi_{2} \circ \phi_{1}^{-1} : (U_{1} \times U_{2}) \times F \longrightarrow (U_{1} \times U_{2}) \times F \\ (X, Y) \longmapsto (X, T_{21} (X) (Y)) \text{ group of } \\ \text{where } \mathcal{T}_{21} : U_{1} \cap U_{2} \longrightarrow \text{Homeo}(F) \\ & \text{homeomorphisms} \\ \widehat{\mathcal{T}_{21}} : U_{1} \cap U_{2} \longrightarrow \text{Homeo}(F) \\ & \widehat{\mathcal{T}_{21}} \text{ transition function or } \\ & \text{dytching function} \end{split}$$

<u>note</u>: if {(U_d, \$,)} a collection of local trivializations

Such that
$$B = U U_{d}$$

then the transition maps satisfy
 $T_{dec}(x) = Id_{F}$
 $T_{ge}(x) = (T_{eg}(x))^{-1}$ (*)
 $T_{ge}(x) = T_{ge}(x) \circ T_{ge}(x)$

evenuse: Show that if
$$\{V_{k}\}$$
 is a cover of B by green
sets and $T_{kp}: (V_{k} \land V_{p} \rightarrow Homeo (F) are maps
satisfying (*) then \exists a bundle \exists over that
realizes this data
Huit: let $E = (\underbrace{II}_{k} (V_{k} \times F))/n$ where $(X,Y) \in V_{k} \times F \rightarrow (X|Y') \in V_{k} \times F$
iff
 $T_{par}(X|V_{y}) = Y$ and $X = X'$
there is an obvious projection to $E \rightarrow B$
exercise: Find an open cover and transation functions for
 $S' \rightarrow S^{2n+1}$ $\mathbb{R}^{n} \rightarrow TS^{n}$ $\mathbb{R}^{2n} \rightarrow TGP^{n}$
 \downarrow $\Box P^{n}$
Suppose $G \subset Homeo(F)$ is a sub topological group (we will only
consider closed subgroups)
 $F \rightarrow E$
 if L^{p} has a collection of transition functions
 $S_{ap}: V_{k} \land V_{p} \rightarrow G$
we say E has structure group G
if the transition functions are not in G bot can be
homotoped to be in G via a homo topy that$

always satisfies (*) then we say the
structure group reduces to G
note: If G preserves some structure on the F,
then the fibers of
$$p: E \rightarrow B$$
 have this structure
examples:
i) if $F = IR^n$ and $G = GL(n; R) \in Homeo(R^n)$
then each fiber has a linear structure
 $IE \ E$ is a vector bundle
i) if $F = R^n$ and $G = GL^*(n; R)$, then E
is an oriented vector bundle
i) if $F = R^n$ and $G = O(n)$, then E
is a vector bundle with a metric.
note: $O(n) \longrightarrow GL(n; R)$ is a homotopy
equivalence \Rightarrow all bundles have metrics!
4) if $F = R^{2n}$, then
 $G = GL(n; C) \iff E$ has complex structure
 $G = U(n) \iff E$ has a Hermitian structure
 $G = U(n) \iff E$ has a Hermitian structure
 $G = O(n) \implies (A \circ 0)$
then E has structure group G
 \iff

$$E \cong E, \oplus E_{L}$$

for E, an \mathbb{R}^{k} -bundle and E, an \mathbb{R}^{n-k} -bundle
similarly if $G = GL(n-k) \in GL(n)$ then
 E has structure group G
 \Longrightarrow
 $E = E' \oplus \mathbb{R}^{k}$ with E' an \mathbb{R}^{n-k} -bundle
So when can you reduce the structure group?
If G is a Lie group (or topological group) then a bundle
 $G \rightarrow P$
 LP is a principal G-bundle if
 M
 $\exists a$ smooth (or continvous) right G-action
 $P \times G \rightarrow P$

such that
i) action preserves fibers
i.e.
$$\gamma \in p^{-1}(x) \Rightarrow \gamma \cdot g \in p^{-1}(x) \quad \forall g, x, y$$

z) Gacts freely and transitively on $p^{-1}(x) \quad \forall x$

Remark: can also define a smooth principal G-bundle
as a smooth manifold P with a smooth right
G-action P×G
$$\rightarrow$$
 P that is free and proper
if for map P×G-P×P J
(Pg) (Pg)(P)
prewinage of compact is compact

examples: 1) if $F \xrightarrow{F} E$ is a bundle with structure group G then there is a cover of M by loc. triv. $\{(U_{A}, \varphi_{A})\}$ with transition functions $\mathcal{T}_{dp}: U_{A} \cap U_{B} \longrightarrow G$ we can construct a principal bundle as follows $P_{E} = \prod_{A} U_{A} \times G / \mathbb{Z}$

> where $(\pi, g) \in \mathcal{Q}_{\alpha} \times \mathcal{G} \sim (\pi', g') \in \mathcal{Q}_{\beta} \times \mathcal{G}$ $\mathfrak{G}^{g'} = \mathcal{T}_{\beta \times}(\pi) \cdot g \quad \pi = \chi'$

exercise: check PE is a principal G-bundle

if E is a vector bundle then PE is a principal GL(n; IR)-bundle. It is called the <u>frame</u> <u>bundle</u> because you can thuik of the fibers of PE as frames for the fibers of E <u>exercise</u>: think through this we denote this bundle F(E) <u>note</u>: O(n) = GL(n; R) so we could look at the

O(n), still call if f(E)

orthonormal frame bundle with fiber

z)
$$5' \rightarrow 5^{2n+1}$$
 is a principal 5'-bundle
 Cp^{n}

Construction: P Given L a principal C-bundle, and M p: G=G'a homomorphism (of Lie groups) where G'c Homeo (F)

 $P_{X_p}F = P_{K}F$ (p·g, f)~(p, p(g)·f)

Exencise: 1) Describe Px, Fusing local trivializations 2) if F=6' then Px, 6' is a principal G-bundle 3) if E is a vector bundle, then $E \cong \mathcal{F}(\mathcal{E}) \times_{\mathcal{P}} \mathbb{R}^n$ where p= id GL(n, R) 4) recall GL(n, R) acts on (R") in a natural way eq. quien AEGL(n, R) we have $A: \mathbb{R}^{n} \to \mathbb{R}^{n}$ $\overset{50}{\mathcal{A}^{*}}:\left(\mathbb{R}^{1}\right)^{*}\rightarrow\left(\mathbb{R}^{n}\right)^{*}$ $(I:\mathbb{R}^{1}\to\mathbb{R})\mapsto I\cdot A:\mathbb{R}^{1}\to\mathbb{R}$ call this $p^*: GL(n; \mathbb{R}) \longrightarrow GL((\mathbb{R}^n)^*)$ check $T^*M \cong \mathcal{F}(T_M) \times_{p^*}(\mathbb{R}^n)^*$ 5) Similarly GL(n; R) acts on $\Lambda^k(\mathbb{R}^n)^*$ in a

natural way GL(n; R) -> GL(1^k(Rⁿ)^{*}) check $\Lambda^{k}(T^{*}M) = \mathcal{F}(TM) \times_{\mathcal{P}_{h}} \Lambda^{k}(\mathbb{R}^{n})^{*}$ now given a principal 6-bundle 1 and a subgroup H<G if I a principal H-bundle PH CP then one can check $P_{\mu} \times_{\mu} G \cong P: (f,g) \mapsto f \cdot g$ is a bundle isomorphism this isomorphism shows that the transition functions for P could be chosen to have wrage in H so the structure group of Preduces to H <u>note</u>: if the structure group of HE) reduces from GL(n;R) to H, then so does the structure group of E: $E \cong \mathcal{F}(E) \times_{H} \mathbb{R}^{n}$ $\longrightarrow \mathbb{H} \subset \mathcal{GL}(n;\mathbb{R}) \text{ acts on } \mathbb{R}^{n}$

so we have turned questions about the structure group of a vector bundle E into questions about the structure group of principal bundles Even more! classifying vector bundles with structure group H is the same as classifying principal

bundles with structure group H. now given a principal 6-bundle & and a subgroup H<G we get the bundle P/H with fiber G/H & not nec. 9 J. With fiber G/H & group!

lemma 12:

let Pbe a principal G-bundle and H<G reductions of the structure group of P to H are in one-to-one correspondence with sections of P/H

and so

(E) note P -> P/H is a principal H-bundle if s: M -> P/H is a section, then $U \pi'(s(x)) \subset P$ is a principal xEM H-bundle Ħ

Example: since ^{GL(n; R)}/_{O(n)} is contractible and bundles with contractible fibers always have a section (<u>erencise</u>: check this! or better see rext section) we see $\mathcal{F}(E)/_{O(n)}$ has a section and so all vector bundles have metrics! So how con we tell if $P/_{H}$ has sections? <u>answer</u>: See rest section. Obstruction Theory