C. Structure Groups of Fiber Bundles
given a fiber bundle $F \rightarrow E$
$\downarrow \rho$
B
we have local trivializations
$U \subset B$ open and a diffeomorphism

$$
\begin{gathered}
\rho^{-1}(U) \xrightarrow{\phi} U \times F \\
p \downarrow_{U}^{0} P_{1}
\end{gathered}
$$

and for two local trivializations $\left(U_{1}, \phi_{1}\right)$ and $\left(U_{2}, \phi_{2}\right)$ we have

$$
\begin{aligned}
& P_{1} \searrow \underset{v_{1} \cap v_{2}}{\left\lfloor\rho^{2}\right.} \\
& \phi_{2} \circ \phi_{1}^{-1}:\left(v_{1} \times v_{2}\right) \times F \longrightarrow\left(v_{1} \times v_{2}\right) \times F \\
& (x, y) \longmapsto\left(x, \tau_{z_{1}}(x)(y)\right) \text { group of }
\end{aligned}
$$

where $\tau_{21}: U_{1} \cap U_{2} \rightarrow$ Homed (F) homeomorptions
transition function or clutching function
note: if $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ a collection of local trivializations such that $B=\cup U_{\alpha}$
then the transition maps satisfy

$$
\begin{align*}
& \tau_{\alpha \alpha}(x)=l d_{F} \\
& \tau_{\beta \alpha}(x)=\left(\tau_{\alpha \beta}(x)\right)^{-1} \tag{*}\\
& \tau_{\gamma \alpha}(x)=\tau_{\gamma \beta}(x) \circ \tau_{\beta \alpha}(x)
\end{align*}
$$

exercise: Show that if $\left\{U_{\alpha}\right\}$ is a coven of B by open sets and $\tau_{\alpha \beta}: U_{\alpha} \wedge U_{\beta} \rightarrow$ Homes (F) are maps satisfying ($*$) then \exists a bundle E oven that realizes this data

Hint: let $E=\left(\frac{11}{\alpha}\left(U_{\alpha} \times F\right)\right) / \sim$ where $(x, y) \in U_{\alpha} \times F \sim\left(x^{\prime}, y^{\prime}\right) \in U_{\beta} \times F$

$$
\tau_{\beta \alpha}(x)(y)=y^{\prime} \text { and } x=x^{\prime}
$$

there is an obvious projection to $E \rightarrow B$
exercise: Find an open coven and transition functions for

Suppose GcHomeo (F) is a sub topological group (we will only consider closed subgroups)

$$
F \rightarrow E
$$

if $\downarrow P$ has a collection of transition functions B

$$
\tau_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G
$$

we say E has structure group G
if the trasition functions are not in G but can be homotoped to be in G via a homotopy that
always satisfies (*) then we say the structure group reduces to G
note: If G preserves some structure on the F, then the fibers of $p: E \rightarrow B$ have this structure
examples:

1) If $F=\mathbb{R}^{n}$ and $G=G L(n ; \mathbb{R}) \subset \operatorname{Homeo}\left(\mathbb{R}^{n}\right)$ then each fiber has a linear structure䜣 E is a vector bundle
2) If $F=\mathbb{R}^{n}$ and $G=G L^{+}(n ; \mathbb{R})$, then E
is an oriented vector bundle
3) $f F=\mathbb{R}^{n}$ and $G=O(n)$, then E
is a vector bundle with a metric
note: $O(n) \hookrightarrow G L(n ; \mathbb{R})$ is a homotopy equivalence \Rightarrow all bundles have metrics!
4) if $F=\mathbb{R}^{2 n}$, then
$G=G L(n ; a) \Leftrightarrow E$ has complex structure $G=U(n) \Leftrightarrow$ E has a Hermitian structure
5) if $F=\mathbb{R}^{n}$ and $G=G L(k) \times G L(n-k) \subset G L(n)$

$$
(A, B) \longmapsto\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

then E has structure group G

$$
\Leftrightarrow
$$

$$
E \cong E_{1} \oplus E_{2}
$$

for E_{1} an \mathbb{R}^{k}-bundle and E_{1} an \mathbb{R}^{n-k}-bundle
similarly if $G=G L(n-k)<G L(n)$ then
E has structure group G

$$
E=E^{\prime} \oplus \mathbb{R}^{k} \quad \text { with } E^{\prime} \text { an } \mathbb{R}^{n-k} \text {-bundle }
$$

So when can you reduce the structure group? If G is a Lie group (or topological group) then a bundle $G \rightarrow P$ $\underset{M}{\stackrel{L}{P}}$ is a principal G-bundle if

Ja smooth (or contivivous) right G-action

$$
P \times G \rightarrow P
$$

such that

1) action preserves fibers

$$
\text { 1.e. } y \in \rho^{-1}(x) \Rightarrow y \cdot g \in p^{-1}(x) \quad \forall g, x, y
$$

2) Gacts freely and transitively on $\rho^{-1}(x) \forall x$

Remark: can also define a smooth principal G-bundle as a smooth manifold P with a smooth right G-action $P \times G \rightarrow P$ that is free and proper if for map $\begin{array}{ll}p_{\times} \in \rightarrow P \times p \\ (p, g) \mapsto(\rho, g, p)\end{array}$ previnage of compact is compact
examples:

1) if $F \underset{M}{E}$ is a bundle with structure group G then there is a coven of M by loci. Priv. $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ with transition functions $\tau_{\alpha \beta}: U_{\alpha} \cap V_{\beta} \rightarrow G$ we can construct a principal bundle as follows

$$
\begin{gathered}
P_{E}=\frac{11}{\alpha} U_{\alpha} \times G / \sim \\
\text { where }(x, g) \in U_{\alpha} \times G \sim\left(x^{\prime}, g^{\prime}\right) \in U_{\beta} \times G \\
\\
g^{\prime}=\underbrace{\tau_{\beta \alpha}(x)}_{\in G} \cdot g \quad x=x^{\prime}
\end{gathered}
$$

exercise: check P_{E} is a principal G-bundle if E is a vector bundle then P_{E} is a principal $G L(n ; \mathbb{R})$-bundle. It is called the frame bundle because you can think of the fibers of P_{E} as frames for the fibers of E exercise: think through this we denote this bundle $F(E)$
note: $O(n) \simeq G L(n ; \mathbb{R})$ so we could look at the orthonormal frame bundle with fiber $O(n)$, still call if $F(E)$
2)
$S^{\prime} \longrightarrow S^{2 n+1}$ is a pricicipal S^{\prime}-bundle
3) regular covening spaces of a manifold are principal bundles
exenisse: Check this. What are the fibers? can an irregular coven be a principal bundle?
exercise:

1) Show a principal G-bundle is trivial \Leftrightarrow it has a section
2) If E is a vector bundle, then a section of E is the same as a $G L(n, \mathbb{R})$-equivariaint map

$$
v: \mathcal{F}(E) \rightarrow \mathbb{R}^{n}
$$

(ne. $\left.v(y \cdot g)=g^{-1} v(y)\right)$
Hint: given $s: M \rightarrow E$ then for each $y \in \mathcal{F}(E)$
let $V(y)=S(p(y))$ expressed in frame y
projection $p: f(E) \rightarrow M$
Construction:
Given $\underset{M}{ } \downarrow$ a principal C-bundle, and
$\rho: G \rightarrow G^{\prime}$ a homomorphism (ot Lie groups) where $G^{\prime} \subset$ Homes (F)
then we can construct an F-bundle with
structure group G'

$$
p \times p F=P \times F /(p \cdot g, f) \sim(p, \rho(g) \cdot f)
$$

exercise:

1) Describe $P_{x} F$ using local trivializations
2) If $F=G$ 'then $P_{x_{\rho}} G$ is a principal G^{\prime}-bundle
3) If E is a vector bundle, then

$$
E \cong F(E) x_{p} \mathbb{R}^{n}
$$

where $p=i_{G L(n, R)}$
4) recall $G L(n, \mathbb{R})$ acts on $\left(\mathbb{R}^{n}\right)^{*}$ in a noturd way eg. given $A \in G L(n, R)$ we have

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

so

$$
\begin{aligned}
& A^{*}:\left(\mathbb{R}^{1}\right)^{*} \rightarrow\left(\mathbb{R}^{n}\right)^{*} \\
& \quad\left(\ell: \mathbb{R}^{1} \rightarrow \mathbb{R}\right) \mapsto \ell \circ A: \mathbb{R}^{n} \rightarrow \mathbb{R}
\end{aligned}
$$

call this $\left.\rho^{*}: G L(n ; \mathbb{R}) \rightarrow G L\left(\mathbb{R}^{n}\right)^{*}\right)$
check $T^{*} M \cong f(T M) x_{p^{*}}\left(\mathbb{R}^{n}\right)^{*}$
5) Similarly $G L(n ; \mathbb{R})$ acts on $\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$ in a
natural way $G L(n ; \mathbb{R}) \xrightarrow{P_{k}}, G L\left(\Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}\right)$
check $\Lambda^{k}\left(T^{*} M\right) \cong \mathcal{F}(T M) x_{p h} \Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$
now given a principal G-bundle $\stackrel{P}{\downarrow} \underset{M}{\downarrow}$ and a subgroup $H<G$
if \exists a principal H-bundle $P_{H} \subset P$ then one can check

$$
P_{H} x_{H} G \cong P:(f, g) \mapsto f \cdot g
$$

H acts on 6 by multiplication
is a bundle isomorphism
this isomorphism shows that the transition functions for P could be chosen to have usage in H so the structure group of P reduces to H
note: if the structure grove of $\mathcal{F}(E)$ reduces from $G(n ; R)$ to H, then so does the structure group of E :

$$
E \cong f(E) \times_{H} \mathbb{R}^{\mathbb{R}^{n}}
$$

$H<G(n ; R)$ acts on R^{n}
So we hove turned questions about the structure group of a vector bundle E into questions about the structure group of principal bundles
Even more! classifying vector bundles with structure group H is the same as classifying prucipol
bundles with structure group H.
now given a principal G-bundle $\stackrel{P}{\sim}$ and a subgroup $H<G$ we get the bundle

$$
P / H
$$

\downarrow
u with fiber G/H $\Sigma^{\text {not nee. }}$ group!
lemma 12:
let P be a principal G-bundle and $H<G$ reductions of the structure group of P to H are in one-to-one correspondence with sections of P / H

Proof:
\Leftrightarrow given a reduction we hove

$$
\stackrel{P_{H}}{\substack{\Perp}} \mathrm{P}
$$

and so

$$
\begin{aligned}
& P_{H} / H \underset{M}{\underset{\text { section }}{\longrightarrow}} P / H \\
& \cong \underset{M}{\longrightarrow}
\end{aligned}
$$

\Leftrightarrow note $P \xrightarrow{\pi} P / H$ is a principal H-bundle If $s: M \rightarrow P / H$ is a section, then $\bigcup_{x \in M} \pi^{-1}(S(x))<P$ is a principal H-bundle
example: since $G L(n ; \mathbb{R}) / O(n)$ is contractible and bundles with contractible fibers always have a section (exercise: check this! or better see next section) we see $f(E) / O(\eta)$ has a section and so all vector bundles have metrics!
So how con we tell if P / H has sections?
answer: See next section. Obstruction Theory

